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Abstract: We theoretically investigate filamentation of ultrashort laser
pulses in air in the mid-infrared regime under conditions in which the
group-velocity dispersion (GVD) is anomalous. When a high-power, ultra-
short mid-infrared laser beam centered at 3.1-μm forms a filament, a spatial
solitary wave is stabilized by the plasma formation and propagates several
times its diffraction length. Compared with temporal self-compression
in gases due to plasma formation and pulse splitting in the normal-GVD
regime, the minimum achievable pulse duration (∼ 70 fs) is limited by
the bandwidth of the anomalous-GVD region in air. For the relatively
high powers, multiple pulse splitting due to the plasma effect and shock
formation is observed, which is similar to that which occurs in solids. Our
simulations show that the energy reservoir also plays a critical role for
longer propagation of the air filament in the anomalous-GVD regime.
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23. L. Bergé and S. Skupin, “Self-channeling of ultrashort laser pulses in materials with anomalous dispersion,”
Phys. Rev. E 71, 065601 (2005).

24. J. Liu, R. Li, and Z. Xu, “Few-cycle spatiotemporal soliton wave excited with filamentation of a femtosecond
laser pulse in materials with anomalous dispersion,” Phys. Rev. A 74, 043801 (2006).
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1. Introduction

Self-channeling beams (i.e. filaments) in air with high-power, ultrashort pulses have been shown
to propagate several diffraction lengths with little apparent change in the beam shape due to
the balance between self-focusing and diffraction/plasma formation [1–10]. These filaments
have received significant attention due to applications to remote sensing [11, 12], lightning
guiding [13–15], supercontinuum generation (SCG) [16], pulse compression [17], and THz
generation [18]. Although several experimental [19–21] and theoretical studies in solids [22–
25] for filamentation and soliton generation in the anomalous group-velocity dispersion (GVD)
regime have been reported recently [26–30], studies of air (or gas) filaments have been limited
to the normal-GVD regime [25, 31–35]. Only recently has the ability of laser technology with
difference-frequency generation (DFG) [36] and optical parametric chirped-pulse amplification
(OPCPA) [37, 38] been developed to produce > 100-GW pulses in the mid-infrared region
where the GVD is anomalous, and investigations of self-focusing in air in the anomalous-GVD
regime are now a possibility.

In this Letter, we present the first simulation results for air filamentation and spatial solitary-
wave formation in the anomalous-GVD regime of air. When a high-power (> 100-GW), ul-
trashort pulse undergoes self-focusing due to the Kerr nonlinearity, multi-photon absorption
(MPA) and plasma formation halt beam collapse. As a result, a spatial solitary wave is formed
and stabilized during the filamentation process, and its shape can be maintained for several
diffraction lengths. Although spectral broadening induced by phase modulation occurs, the rel-
atively narrow bandwidth of the anomalous-GVD regime (approximately 200-nm) near 3-μm
inhibits formation of a temporal solitary wave, which contrasts to the generation of few-cycle
optical pulses predicted for solids in the broadband anomalous-GVD region [23, 24] and to
pulse self-compression down to few-cycles which occurs via plasma formation and/or pulse
splitting in gases for the normal-GVD regime [31, 32, 39–44].

2. Simulation and refractive index of air

In our simulations, we use the radially-symmetric nonlinear envelope equation (NEE) in nor-
malized units including diffraction, dispersion, self-focusing with the delayed Raman response,
MPA, and plasma de-focusing and absorption, which is given as [23, 43, 45–47],

∂ψ
∂ζ

=
i
4

(
1+

i∂
ωτp∂τ

)−1

∇2
⊥ψ + iLd f
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⎠ , (1)

where ψ is the field normalized by the peak input field amplitude A0, ζ = z/Ld f is the propaga-
tion distance normalized by the diffraction length Ld f = n0πw2

0/λ0, n0 is the refractive index of
air, w0 is the 1/e2 spot size radius, λ0 is the central wavelength, ∇2

⊥ is the transverse Laplacian,
τ is the retarded time normalized by the 1/e2 input pulse duration τp, βn is the nth-order dis-
persion parameter [48], Lnl = c/(ωn2I0) is the nonlinear length, n2 is the nonlinear refractive
index, I0 = cn0|A0|2/2π is the peak input intensity, τk = 70 fs is the Raman relaxation time,

Lmp = 1/(β (m)I(m−1)
0 ) is the m-photon absorption length, β (m=31) = 3×10−384 cm59/W30 is the

31-photon absorption coefficient [7], Lpl = 2/(σρ0ωτc) is the plasma length, σ is the inverse

bremsstrahlung cross section, ρ0 = β (m)I(m−1)
0 τp/(mh̄ω) is the total electron density that would
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be produced by the input laser pulse via multi-photon ionization, τc is the electron-ion collision
time, η = ρe/ρ0 is the normalized electron density. The operator (1+ i∂/ωτp∂τ) accounts
for space-time focusing in the diffraction term and self-steepening in the self-focusing term.
The plasma is generated by multi-photon ionization and avalanche ionization, and the electron
density satisfies the equation,

∂η
∂τ

= |ψ|2m +αη |ψ|2, (2)

where α = σ I0τp/(n2
0Eg) is the avalanche ionization coefficient, and Eg = 12.1 eV the band-gap

energy for oxygen.

Fig. 1. Calculated group-velocity dispersion (GVD) for different values of the humidity
using the Taylor expansion formula based on Ref. [49] at T = 17.5◦C, p = 101325 Pa
(standard atmospheric pressure).

The dispersion parameters at 3.1-μm are calculated using the Taylor expansion formula,
which is a function of wavelength λ , temperature T , pressure p, and humidity h [49]. Figure
1 shows the calculated GVD for different values of humidity at T = 17.5◦C and p = 101,325
Pa (standard atmospheric pressure). As humidity and temperature (not shown) increase, the
absolute magnitude of the GVD and the wavelength range of anomalous GVD decrease slightly,
and the peak of the GVD shifts toward longer wavelengths. We assume 10 % humidity (h = 10)
for our calculations such that β2 = -0.53 fs2/cm, β3 = 3.02 fs3/cm, and higher-order dispersion
parameters (n ≥ 4) are all positive. The anomalous-GVD region near 3.1-μm which spans
200-nm is related to the water vapor absorption, and the fitting coefficients used for index
calculation are valid between 2.8-μm and 4.2-μm. There exist strong resonance absorption
regions between 2.5 – 2.8-μm and 4.2 – 4.4-μm due to the presence of water vapor and carbon
dioxide (CO2) [49–51]. The calculated critical power Pcr = αλ 2/(4πn0n2), where α = 1.8962
for the input Gaussian beam profile [52], is equal to 66-GW [53]. We limit the peak power of
the input pulse P ≤ 8Pcr to avoid multi-filamentation.

3. Results and discussion

Figure 2(a) shows a plot of the peak intensity as a function of normalized distance for differ-
ent input powers. Here we assume the collimated, initial spot size (1/e2 radius) is 12-mm and
the initial pulse duration (FWHM) is 150 fs such that Ld f = 146-m approximately matches
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Fig. 2. Calculated (a) peak intensity, (b) peak plasma density, (c) beam diameter (FWHM)
of the fluence Fr =

∫
I(r, t)dt and (d) pulse duration (FWHM) of the fluence Ft =

∫
I(r, t)rdr

as functions of normalized propagation distance for various input powers.

with Lds = τ2
p/β2 = 306-m. As the peak intensity increases due to self-focusing and anomalous

GVD, a low-density plasma is created as shown in Fig. 2(b). At that point, plasma absorption
and de-focusing combined with MPA arrest beam collapse so that an air filament with I = 5
× 1012 W/cm2 forms and propagates stably about 0.03, 0.05 and 0.06 times the diffraction
length of the input beam for P/Pcr = 2, 3 and 4. For increasing powers, collapse occurs at
shorter distances, and the filament length is extended. According to the calculated beam diam-
eter (FWHM) [Figs. 2(c)], the filament maintains its diameter (1.4-mm FWHM), which is 1/10
that of the initial beam and thus a spatial solitary wave is generated during filamentation, propa-
gating for at least 3 times of the diffraction length based on its minimum spot size. As is shown
in Fig. 2(d), although the pulse duration initially decreases due to anomalous GVD, it suddenly
increases near the peak intensity due to spectral broadening into the normal GVD regime via
self-phase modulation and slowly decreases again since the field components at wavelengths
in the anomalous GVD regime undergo compression as the pulse propagates. Therefore, com-
pared with calculated few-cycle spatio-temporal solitary waves in the anomalous-GVD regime
for solids [23, 24], a solitary wave is not generated near 3.1-μm due to the relatively narrow
bandwidth of the anomalous-GVD region.

Figure 3(a) shows examples of the spatio-temporal intensity distributions for various prop-
agation distances with P/Pcr = 2. As the beam self-focuses, self-steepening and space-time
focusing combined with third-order dispersion generate a relatively steep edge at the rear of
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Fig. 3. (a) Spatio-temporal intensity profiles at various propagation distances ζ = z/Ld f
for P/Pcr = 2. (b) On-axis spectra at various propagation distances for P/Pcr = 2. (c) Spa-
tiotemporal intensity profiles of collapsing pulses at ζ = 0.54 for P/Pcr = 3, and (d) at ζ =
0.42 for P/Pcr = 4
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the pulse (i.e., an optical shock) and push the pulse toward positive times [23, 24, 46, 54, 55]
[see Fig. 3(a) at ζ = 0.6]. Subsequently, the pulse collapses at ζ = 0.9, and SCG occurs as
shown in the on-axis spectra [Fig. 3(b)]. Blue-shifted wavelength components in the normal-
GVD regime (i.e., below 3-μm in Fig. 1) that are generated by the optical shock form a long
trailing edge [24], and it diffracts as the beam loses its energy by MPA and plasma generation.
Similar spatio-temporal behavior during beam collapse and filament generation is observed for
P/Pcr = 3 and 4 [Figs. 3(c) and 3(d)].
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Fig. 4. Calculated (a) peak intensity, (b) beam diameter (FWHM) as functions of normal-
ized propagation distance for P/Pcr = 6 and 8. (c) Examples of spatio-temporal intensity
profiles at various distances for P/Pcr = 6.

Multiple collapse is observed for higher powers (P/Pcr = 6 and 8), as experimentally demon-
strated in solids [19] [Fig. 4(a)]. Although similar spatio-temporal shapes are generated in the
first collapse region, as in the case at low powers, plasma defocusing and refocusing in the tem-
poral domain combined with strong shock terms produce pulse-splitting accompanied by com-
plicated temporal dynamics such as further splitting and energy transfer between split pulses in
the secondary collapse regions [Fig. 4(c)] [23].

The role of the background energy reservoir supplying the energy into the filament core
which contains approximately one critical power when it loses energy due to mechanisms such
as MPA has been studied by many groups [56–63]. We also compare air-filament propagation
for P/Pcr = 6 by simulating the placement of apertures with different diameters that block
a fraction of the reservoir energy [Fig. 5]. Simulation results show that the filament length
and the number of multiple collapse regions decrease with apertures, which confirms that the
background energy is important for longer propagation of the filamen, as is the case in the
normal-GVD regime.
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Fig. 5. Air filament formation and propagation with apertures of which sizes are 4 and 6
times of the minimum spot size (∼ 1.2-mm) at ζ = 0.3 for P/Pcr = 6.

4. Conclusion

In conclusion, we investigate air filamentation for relatively large diameters in the anomalous-
GVD regime centered at 3.1-μm. The mm-sized filament can propagate several times its diffrac-
tion length, and the propagation distance increases with the higher laser input power. However,
the potential formation of a spatio-temporal solitary wave is inhibited by the narrow band-
width of the anomalous-GVD regime. Two other wavelength regions below 10-μm with the
anomalous-GVD and weak absorption include two 100-nm bandwidth regions centered at 4.7
μm related to CO2 absorption and at 9.5 μm related to O3 absorption [49–51]. Since the
high-power, ultrashort mid-infrared laser technology has rapidly progressed in recent years,
we expect that the necessary power (> 100-GW) for experimental studies should be available
soon [36–38].
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